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ABSTRACT

A parallel version of an unstructured-grid based Navier-Stokes solve1, USM3Dns,

previously developed fi)r efficient operation on a variety of parallel computers, has been

enhanced to incorporate upgrades made to the serial version. The resultant parallel code

has been extensively tested on a variet)' of problems of aerospace interest and on two sets of

parallel computers to understand anti document its characteristics. An innovative grid

renumbering construct and use of non-blocking communication are shown to produce super-

linear comlmting pepfonnance. Preliminao" results firm parallelization of a recently

introduced "porous surface" boundar)" condition are also presented.

INTRODUCTION

As computers gain in speed and efficiency, rapid

Computational Fluid Dynamic (CFD) simulations

using Navier-Stokes (N-S) equations is becoming a

design requirement. Once a very difficult

proposition, full N-S solutions in a short (I-2 week)

time, have become attainable in recent years due to

use of unstructured grids. Over the past few years, it
has become evident that the turn-around time can be

further reduced by the use of parallel N-S solvers on

multi-CPU computers. Parallel computing involves

distributing the computational load to a number of

processors for simultaneous operations. An obvious

advantage of parallel computing is the reduced wall-

clock time resulting in rapid turn-around. The other,

not-so-obvious, advantages include use of a large
number of smaller CPUs instead of a large super-

computer and off-hour utilization of computational

resources, which would otherwise idle during these

hours. Several parallel, unstructured grid-based
Navier-Stokes solvers have been developed and

recently reported in the literature. Examples can be
found in Refs. 1-3.

This paper describes parallelization of the Navier-

Stokes solver USM3Dns, belonging to the TetrUSS

software system. TetrUSS is a tetrahedral,
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unstructured grid-based complete flow analysis

system for CFD analysis of complex configurations.

The system consists of components for grid

generation, flow solution and pre- and post-
processing. An overview of all the components of

TetrUSS and their capabilities can be found in

reference [4].

Parallelization of an earlier serial version of

USM3Dns was reported in Ref. I. Since then an

improved version of the serial code has been

deveIoped. These improvements include revised

vorticity computations for more accurate turbulent

production terms, a different restart file format,

enhanced user functionality related to debugging and

diagnostics, and introduction of a "porous surface"

boundary condition (BC) [5].

The main aim objectives of the of the present work

include, (1) upgrade of the previously developed

parallel version to include the latest improvements
made to the serial code, using techniques reported in

Reference I, (2) evaluation of the efficiency of the

resultant parallel code on a variety of parallel

environments, and (3) do so without degrading the

accuracy as compared to the serial code.

In the following sections, salient features of the flow

solver are first briefly described, followed by an

overview of the main features of the parallel code.

Finally, the performance and efficiency of the
parallel solver is demonstrated on three

configurations.



N-S SOLVER USM3Dns

The flow-solver component of TetrUSS is called

USM3Dns[6], which is a three-dimensional,

tetrahedral, cell-centered, finite-volume Navier-

Stokes solver. Inviscid flux quantities are computed

across each cell face using Roe's flux-difference

splitting (FDS) [7]. Spatial discretization is

accomplished by a novel reconstruction process,

which is based on an analytical formulation for

computing solution gradients within tetrahedral cells.

The solution is advanced to a steady state by an

implicit backward Euler time-stepping scheme. Flow

turbulence effects are modeled by the Spalart-

Allmaras (S-A) one-equation model [8]. In addition

to full viscous solution capability, a wall-function
formulation is also available to reduce number of

cells in the boundary layer.

The flow solver and its companion programs in

TetrUSS are widely used by many in the US

aerospace industry, academia and Government
research laboratories.

Parallelization Features

As reported in Ref. i, grid partitioning is achieved

by a mathematically rigorous "multi-level spectral

bifurcation" graph partitioning technique called

Metis [9]. The basic Metis algorithm divides the grid

in groups of contiguous points or nodes. Since the

grid used in TetrUSS needs to be divided in groups

of contiguous tetrahedral cells, the Metis program

has been modified to be carryout this function. The

partitioning algorithm is very efficient and only

requires a few seconds of CPU time to divide a grid

into a user specified number of "nearly equal"

partitions.

Since fluid dynamic computations are grid based,

parallelization is achieved by dividing the

computational grid into a large number of smaller

zones (partitions) and assigning each zone to a CPU.

All CPUs then simultaneously work on different part

of a computational grid, sharing information when

necessary and thus advancing the flow solution. The

two main elements for an efficient parallel code are

load balancing and efficient communication among

processors. Load balancing assures an equitable
work distribution to all CPUs involved. An efficient

communication between processor is important

because data sharing between neighboring cells and
points, which may be physically assigned to

different CPUs, is needed many times during the

flow solution iteration process.

Grid Partitioning

A partitioning algorithm is required to form suitable

grid partitions for parallel operation. For optimum

performance, the grid partitions not only need be of
nearly equal size, but also should be physically

contiguous and should have the smallest possible

inter-partition boundary to minimize communication

requirements.

Figure 1 - Grid on an ONERA M6 wing divided

into 6 nearly equal partitions.

Figure I shows a viscous, tetrahedral unstructured
grid on an ONERA M6 wing configuration,

partitioned into six (6) zones, each shown in a

different color. The original grid has 495,012 ceils.
The partitions vary in size from 78,679 to 84,977

cells. Compared to a perfectly balanced size of

82,502 cells per partition, the partitioning results in
about a +3% to -4.6% imbalance.

Grid partitioning is accomplished as an independent

pre-processing step and provides the solver with a

partition number associated with each computational

cell. The solver uses this information to assign

appropriate grid geometry data to each CPU.

Parallelization of the Solver

The present parallel effort is based on the techniques

reported in Reference 1. Accordingly, all the
modifications to the serial code have been

accomplished by embedding suitable Message

Passing Interface (MPI) calls at appropriate places in
the code. Salient features for some of these



operationsarebrieflydescribedin thissectionFor
details,thereaderisreferredtoRef.1.

Input/Output (I/O)
In an effort to keep the code portable and able to run

in a variety of parallel environments, all the required
I/O is conducted in the root (or master) processor.

The global grid and ceil-to-partition correspondence

is read by the root processor and broadcast to other

processors. Using this data, each processor performs

the following tasks:

2.

Extracts data needed for its own use and

renumbers the local grid, and

Finds the grid cells, nodes and faces that lie

on the inter-partition boundaries through

which inter-processor communication will

take place during flow solver iterations.

Upon program completion, each processor sends its

own data to the root processor, which properly

assembles the data and writes all output files,

including the restart file. Such an operation affords

true scalability in that all the output files are
'universal', i.e. a restart file written at the end of a

run with "n" processors can be read in a subsequent

run using "m" processors. However, it may be

noted that the partitioning program needs to be re-

run for changing the solution from "n" to "m"

proce ssors.

Data Structures

The flow solver employs a cell centered, upwind
based scheme, and the information flows from a cell

to its neighboring cells through cell faces. Thus, cell

faces on the partition boundaries of a partition need
to communicate with cells, which physically reside

in another CPU. Inter-partition cells outside a

partition are termed as partition ghost cells and their

non-inter-partition node as ghost nodes. Updating of
flow variables for partition cells on the inter-

partition boundaries requires current flow variable

values at ghost cells and nodes. This is
accomplished by specialized communication send-

and receive-arrays between a partition and its

neighbors. These 1-D arrays are formed as a pre-
processor step and values contained in these arrays

are constantly updated as the flow solution

progresses. All data structures, being memory
overhead, are optimized for efficiency and form an

insignificant part of the overall required memory.

Iteration Loop

The implicit formulation of USM3Dns leads to a

sparse set of equations that are iteratively solved
using a Gauss-Seidel (GS) type iterative procedure.

One GS cycle is achieved by doing up to 20 sub-

iterations; each using updated values from the

previous sub-iteration. At the end of each sub-

iteration, communication is required to update data

corresponding to ghost cells/nodes. Such a

communication overhead presents serious

performance degradation. To overcome this
"bottleneck", an innovative concept involving

overlapping of computations and communications is

devised. Accordingly, cells in each partition are

renumbered beginning with the cells on the partition

interface boundaries, followed by interior ceils and

finally the partition ghost cells. At the end of the

update of flow values at the partition interface cells,
while these values are communicated to the

appropriate places, the interior cells are

simultaneously updated, thereby overlapping the

computation and communication times. For the most

part, this results in little or no communications

overhead. Use of this specialized technique has

greatly improved the time per iteration performance

of the parallel code.

Parallelization of Porous Boundary

Condition

A boundary condition suitable for simulating

passively porous aerodynamic surfaces has been

recently added to the serial version of the flow

solver USM3Dns[5]. The implementation assumes a

constant pressure plenum underneath a porous

surface. The plenum pressure is a function of the net

mass flux over the entire porous surface and is

determined iteratively. Parallel implementation of

the porous BC requires:

1. transfer of mass flux from CPUs containing

porous surfaces to the root processor,

2. calculation of "net" mass flux and average

plenum pressure, and

3. broadcast of average plenum pressure value
to all CPUs for use in the subsequent

iteration.

3
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RESULTS

The efficiency and accuracy (in terms of faithful

reproduction of serial code data) is demonstrated

here by running the parallel and the serial codes on

three aerospace configurations. The configurations

are a simple ONERA M6 wing configuration and a

complex F-16 fighter configuration complete with

external fuel tank and a store. Additionally, the

validity of the parallelization of the recently added

porous BC to USM3Dns is demonstrated on a 5-

Caliber Tangent-Ogive forebody configuration.

All of the parallel solutions were obtained on either

an SGI Origin 2000 system located at NASA Ames

Research Center or a local cluster of Compaq

XPI000 Personal Computer (PC) nodes. The Origin

2000 is a shared memory computer, with 256

available nodes (CPUs), each with 256 MB of run

time memory and UNIX- based operating system.
The PC cluster is a distributed memory system of

individual PCs, each with IGB of main memory and

a Linux operating system (Red Hat 6.0). The

individual PCs are connected by a high-speed

communications bridge.

Customarily, the efficiency of parallel computations

is measured by evaluating the utilization of allocated

CPUs for a given task. While several ways of

measuring parallel efficiency have been reported in
the literature, one of the most commonly used

measure is the so called, Speed-Up Factor (SF),
which is defined as [10]

Baset_i.ne Processor T_rrte /I_rat_or_
SF=

Mtdt.i-Pvoeesso'r Tinz¢/Itcrctt_o.r_

The time/iteration is averaged over a number of

iterations to smooth out small variations caused by

factors such as latency of the computer, available

access to memory and computational load.

Traditionally, time/iteration on one processor has

been used as "Baseline" in the above equation.

However, in all the results presented here, a number

greater than one is used as "baseline". This is done

for at least two reasons; I) the large grid size for the

configuration would not fit on a single processor of

any parallel computer for which access was

available, and 2) by using a multiple CPU run as the

baseline to compare all subsequent multi-CPU runs,
the same version of the code was used. If, however,

a single CPU run were used as the baseline,

differences in the performance of a serial vs. a

parallel version of the code also need to be

quantified. The Speed-Up Factor, as defined above,

has been used in the present study to evaluate

efficiency of the parallel code.

ONERA M-6 Wing

The ONERA M6 wing configuration has been

traditionally used as a first test case for validation of

many new 3-D CFD solvers. An unstructured grid,

suitable for full viscous calculations (Y*_=_l), with

495,012 tetrahedra and 86,389 points, was generated

for this study. The grid was suitably partitioned and
run on a number of CPUs for the flow conditions of

a free-stream Mach number of 0.8447 and an angle-

of-attack of 5.06 degrees.

Figure 2 shows the Speed-Up factor plotted against
the number of CPUs. The speed-up factor has been

calculated by considering the time per iteration

derived from a 10-processor run as "baseline", i.e.

assuming it to give a speed-up of 10. Superimposed

on the speed-up factors in Figure 2, is a straight-line

depicting linear speed-up. As can be seen, the

parallel code produces a super-linear performance.

This counter intuitive observation has been carefully

analyzed and can be explained as follows.
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Figure 2 - Speed-Up performance on an Origin

2000 computer system for ONERA M6 Wing.

Mach= 0.8774, cz = 5.06 deg. Re =11.7 X 10 _.

Computations using unstructured grids require

access to widely differing array indices due to
inherent lack of structure. This requires

indiscriminate use of cache, resulting in a large

4



numberof "cache-misses"andhencethetimeper
iterationbecomescachedominated.Withincreasing
numberof processors,thegrid sizeassignedto a
processorgetssmallerandthecacheaccessbecomes
more efficient, resulting in super-linear
performance.Anotherfactorcontributingto the
super-linearperformanceis the aforementioned
renumberingofthepartitiongridandtheuseofnon-
blockingcommunication.Thereis, however,an
upperlimit to the increasing cache efficiency for a

given grid size. For a very large number of

processors (e.g. 100 processors in the above case),

the grid assigned to a processor becomes very small
while the number of faces over which

communication takes place becomes larger. The

communication time thus becomes larger than the

computation time for a given iteration, and the

efficiency begins to deteriorate.

Running the same code and the grid on a PC cluster

with a large cache memory size further validates the

above observation. While each processor of the

Origin 2000 has 32KB of cache, each PC CPU has 2

MB of cache memory. This means that even for a
lower number of CPUs the cache misses are

relatively small, so cache efficiency is not expected

to impact as dramatically as on a computer with a

small cache memory. Figure 3 shows the

performance on a 6-CPU PC cluster. For this figure,

a 2-processor time/iteration is taken as baseline.
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Figure 3 - Speed-Up performance on a PC cluster

for ONERA M6 Wing. Mach= 0.8774, cc = 5.06

deg. Re=ll.7 X 10 +.

Comparison with Serial Code

Finally, to demonstrate that no accuracy is lost

during parallelization, results from a 100-CPU

parallel run are compared to those from a single-

CPU serial run. In Figure 4, the normalized residuals

and integrated value of lift (CL)are plotted against

the iteration count. A very good agreement between

the two confirms the accuracy of the parallel solver
relative to the serial version
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Figure 4 - Comparison of parallel and serial

results for ONERA M6 Wing.

F-16 Aircraft with Stores

Parallel, transonic Navier-Stokes computations were

performed on a complete F-16 aircraft configuration.

A thin-layered, tetrahedral grid, generated for the

study reported in Ref. 11, had 1,428,779 cells
(255,959 nodes). The normal grid spacing was sized

for the wall function to yield a nominal mid-chord
Y+--_30 for the first node above the surface and 18 to

20 tetrahedra in the boundary layer. Figure 5

depicts a solid model representation of the

5



configuration.Although,thefull aircraftisshownin
thepicture,allthecomputationsreportedhere,were
doneonaone-halfofthesymmetricmodel.

Figure5 - Solid model depiction of a F-16 aircraft

configuration used to evaluate performance of the

parallel code.

Figure 6 shows a sample, partitioned grid for this
case, divided into 5 partitions; each partition shown

with a different color. The parallel solver was run on

the Origin 2000 computer system for a Mach

number of 0.95, an angle-of-attack of 4.0 deg., and a

Reynolds number based on the mean aerodynamic

chord (MAC) of 2 million. The efficiency of the

parallel code is shown in Figure 7 where the Speed-

Up Factor is plotted against the number of CPUs.

For this figure, the time/iteration for a 12-CPU run
was used as baseline.

Figure 7 shows super-linear performance on this

grid. As compared to the ONERA M6 wing (Figure

2), this configuration does not indicate any

degradation in speed-up for up to 100 processors.

Such a behavior is expected because for the same

number of processors, a larger grid still has a larger

number of interior cells compared to the inter-

partition boundary cells. Thus, communication time

can be absorbed within the computational time for a

larger number of processors. It is expected that the
SF will eventually fall-off as the number of

processors is further increased.
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Figure 7. Speed-Up performance on an Origin

2000 computer system. F-16 Configuration.

Mach= 0.95, 0¢ = 4.0 Deg., Re =2.0 X lO _.

Once again, reproduction of serial results by the

parallel code is shown by comparing longitudinal

distribution of the pressure coefficient (Cp) along
the outboard and inboard sides of the "outer" finned

store on the airplane. The comparison, in Figure 8,

shows Cp distribution from the serial as well as the

parallel codes and is compared against the

experimental data from Ref. 12. As can be seen, the

serial and the parallel version predict the same

behavior attesting to the "faithful reproduction" of

the serial results by the parallel code.

4

Figure 6 - Computational grid on an F-16

configuration divided into 5 partitions.
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Figure 8. Longitudinal distribution of surface

pressure coefficient on the outer "finned-store"

on a F- 16 configuration.

Turn-Around Time

A major motivation for use of a parallel CFD code is

to reduce wall-clock time resulting in rapid turn-

around. Development and use of unstructured grids

and parallel N-S solvers, like the one described here,

is an attempt in this direction. For example the

viscous solution on the F-16 configuration, shown

earlier, would require about !1.78 hours on single

processor of a CRAY C-90. This same case was run

in 8.0 hours on a 6-processor PC or in 0.68 hours on

a 06-processor Origin 2000.

Tangent-Ogive Forebody

The implementation of the porous boundary

condition in USM3Dns [5] has been parallelized

presently. The parallel implementation has been on

a 5.0 caliber Tangent-Ogive forebody configuration.

For computations presented here, only half

configuration was modeled. The unstructured grid

had 1,009,929 cells and 178,620 points. The grid

was suitable for a wall-function application on the

solid part of the configuration. The simulated

configuration was 4 inches in diameter and 40

inches long. As shown schematically in Figure 9, a

surface porosity of 22% was applied on a region
from x= I to 20 inches from the nose.

Figure 9. Surface representation of 5.0 caliber

tangent-ogive configuration. Porous region
indicated in red.

Navier-Stokes solutions using the serial and the

parallel codes, were obtained on this configuration

at Mach number = 0.3, Angle-of-attack of 30

degrees and a Reynolds number based on the

diameter of 0.4 million. A solution with porosity

turned-off was obtained first. Then the porosity was

turned-on and the solution restarted. The porous

solution was terminated when the plenum pressure

converged to a steady state value. Figure 10 shows

surface Cp contours for the solid (a) as well as the

porous (b) conditions, and clearly shows the effect

of porosity in diffusing the pressure gradients on the

porous part of the configuration.

a)

b)

Figure 10. Surface Cp on 5.0 caliber tangent-

ogive configuration, a) Solid, b) Porous.

Figure I1, shows comparison of surface Cp

distribution between computed and experimental
data taken from Ref. 13, at a streamwise station 10

inches from the nose. The windward centerline



correspondsto a q) = 0 deg.and its leeward
counterparttoq3= 180deg.Thecurvesrepresenting
thesingleandparallelsolutionscomparereasonably
well witheachother,althoughboththecomputed

exactly match with thesolutionsdo not
experimentaldata
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SUMMARY

A parallel version of an unstructured-grid based

Navier-Stokes solver, previously developed for
operation on both shared as well as distributed

memory parallel computing systems, has been

enhanced to include upgrades made to the .serial

version of the code. Scalability of the resultant

parallel code is demonstrated by example flow
solutions on three configurations of aerospace

interest. An innovative grid renumbering construct

and overlapping commtlnication and computational

times during flow iterations is shown to produce

linear or super linear performance. Fast parallel

solvers like the one reported here along with
affordable PC clusters are sure to enhance

productivity of future engineering design cycIes.
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